Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.172
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629521

RESUMO

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Feminino , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Calefação , Monitoramento Ambiental/métodos , Medição de Risco , Carvão Mineral/análise , China
2.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594356

RESUMO

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Criança , Humanos , China , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Hungria , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios/química , Água , Poluentes Químicos da Água/análise , Adulto
3.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578375

RESUMO

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Assuntos
Poluentes Ambientais , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cobre/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Poluição Ambiental/análise , Solo , Poluentes Ambientais/análise , Mineração de Dados , Monitoramento Ambiental/métodos , China , Medição de Risco
4.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527881

RESUMO

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzeno , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Estações do Ano , Poeira/análise , Carvão Mineral/análise , Sulfatos/análise
5.
Sci Total Environ ; 926: 171873, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521275

RESUMO

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Material Particulado/análise , Cidades , Hidrocarbonetos Policíclicos Aromáticos/análise , China/epidemiologia
6.
Chemosphere ; 354: 141641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460850

RESUMO

The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Áreas Alagadas , Ecossistema , Multimídia , Monitoramento Ambiental , Água , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
7.
Chemosphere ; 355: 141796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537711

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Carvão Vegetal/química , Poluentes do Solo/química , Solo/química
8.
Chemosphere ; 355: 141779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537709

RESUMO

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise , Emissões de Veículos/análise , Material Particulado/análise
9.
Chemosphere ; 355: 141821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548073

RESUMO

Conventional chemical extraction methods may lead to overestimate or underestimate bioaccessibility due to their inability to provide realistic kinetic information regarding PAHs in soils. In this study, we propose the use of magnetic solid phase extraction (MSPE) technique for assessing the bioaccessibility of PAHs in the soil-earthworm system. Firstly, a novel polydopamine-coated magnetic core-shell microspheres (Fe3O4-C16@PDA) was developed by a one-pot sol-gel and self-polymerization method. The PDA coatings not only enhance the hydrophilicity of material surfaces but also exhibit excellent biocompatibility. The maximum adsorption capacity of Fe3O4-C16@PDA for 16 PAHs was 52.72 mg g-1, indicating that the proposed material fulfills the assessment requirements for highly contaminated soil. To compare the measurement of PAHs and their uptake by earthworms (Eisenia fetida), experiments were conducted using four different soils with varying properties. The desorption kinetics data obtained from these experiments demonstrated that the capability of the MSPE in accurately predicting the bioavailable portions of PAHs. After a 28-day exposure, the best predictor of bioavailable PAHs in earthworms was MSPE method exhibited the highest correlation coefficient (R2 > 0.90), and its slopes in the four soils were 0.972, 0.961, 1.012, and 0.962, respectively, all close to 1. These results demonstrate that the MSPE method successfully mimics the conditions encountered in soil-earthworm systems and effectively assess bioaccessibility of PAHs in soils.


Assuntos
Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Solo/química , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Extração em Fase Sólida , Fenômenos Magnéticos
10.
Chemosphere ; 355: 141793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548075

RESUMO

Relations among polycyclic aromatic hydrocarbons (PAHs), biomarkers of oxidative stress (lipid peroxidation, glutathione, and glutathione S-transferase activity), and the possible influence of environmental factors (temperature, pH, and salinity) were assessed in situ for specimens of Ramnogaster arcuata, a native estuarine fish. PAH levels found in the muscular tissue of R. arcuata ranged from 0.7 to 293.4 ng g-1 wet weight with petrogenic and pyrolytic inputs. Lipid peroxidation in the liver showed positive correlations (P < 0.05) with total PAHs (r = 0.66), 3-ring (r = 0.66) and 4-ring PAHs (r = 0.52) and glutathione in muscle (r = 0.58). Significant positive correlations (P < 0.05) were also evidenced between muscular glutathione with total (r = 0.62) and 3-ring PAHs (r = 0.75). Hepatic glutathione S-transferase negatively correlated with 4-ring PAHs (r = -0.58). These correlations suggest that lipid peroxidation and muscular glutathione could be good biomarkers for complex mixtures of PAHs, and hepatic glutathione S-transferase could be a suitable biomarker for 4-ring PAHs. Furthermore, significant correlations (P < 0.05) of environmental factors with PAH levels and biomarkers were observed, especially pH with 3-ring PAHs (r = -0.65), lipid peroxidation (r = -0.6), glutathione in the liver (r = -0.73) and muscle (r = -0.75); and temperature with 2-ring PAHs (r = -0.75) and glutathione in muscle (r = 0.51). The data suggest an influence of physicochemical parameters which could be driving a shift in PAH toxicity in R. arcuata. These results are essential for an integrated understanding of ecotoxicology and could help to predict environmental effects in present and future scenarios of ocean warming and acidification.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Peixes/metabolismo , Estresse Oxidativo , Biomarcadores/metabolismo , Glutationa/farmacologia , Glutationa Transferase/metabolismo , Poluentes Químicos da Água/análise
11.
Chemosphere ; 355: 141852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556179

RESUMO

With industrialisation and the rapidly growing agricultural demand, many organic compounds have been leaked into the environment, causing serious damage to the biosphere. Persistent organic pollutants (POPs) are a type of toxic chemicals that are resistant to degradation through normal chemical, biological or photolytic approaches. With their stable chemical structures, POPs can be accumulated in the environment, and transported through wind and water, causing global environmental issues. Many researches have been conducted to remediate POPs contamination using various kinds of biological methods, and significant results have been seen. Microalgae-bacteria consortium is a newly developed concept for biological technology in contamination treatment, with the synergetic effects between microalgae and bacteria, their potential for pollutants degradation can be further released. In this review, two types of POPs (polychlorinated biphenyls and polycyclic aromatic hydrocarbons) are selected as the targeted pollutants to give a systematic analysis of the biodegradation through microalgae and bacteria, including the species selection, the identification of dominant enzymes, as well as the real application performance of the consortia. In the end, some outlooks and suggestions are given to further guide the development of applying microalgae-bacteria consortia in remediating POPs contamination. In general, the coculturing of microalgae and bacteria is a novel and efficient way to fulfil the advanced treatment of POPs in soil or liquid phase, and both monooxygenase and dioxygenase belonging to oxygenase play a vital role in the biodegradation of PCBs and PAHs. This review provides a general guide in the future investigation of biological treatment of POPs.


Assuntos
Poluentes Ambientais , Microalgas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Orgânicos Persistentes , Biodegradação Ambiental , Microalgas/metabolismo , Monitoramento Ambiental , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
12.
Sci Total Environ ; 925: 171726, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492591

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), a group of seriously hazardous environmental contaminants, have attracted extensive attention due to their carcinogenicity, genotoxicity, mutagenicity, and ubiquity. In this work, the excellent hydrophobic trifluoromethyl-enriched covalent organic framework (CF3-COF) was designed and synthesized as coating of solid-phase microextraction (SPME). The CF3-COF offered a high adsorption selectivity for PAHs, which could be attributed to the multiple interactions between the CF3-COF and PAHs, including hydrophobicity interaction, π-π and H bond interactions. Furthermore, headspace (HS) and direct immersion (DI) dual-mode solid-phase microextraction (HS/DI-SPME) were innovatively integrated as a dual-mode extraction by varying the length of SPME coating on stainless-steel, which could simultaneously and efficiently extract 16 PAHs with different volatile. Amazingly, the proposed strategy achieved fast adsorption for PAHs and shortened the adsorption equilibrium time to 15 min. By further integrating with gas chromatography tandem mass spectrometry (GC-MS/MS), PAHs could be detected in the range of 0.008-0.16 ng mL-1 with a quantitative limit of 0.029-0.47 ng mL-1, respectively. The recoveries of PAHs in water samples ranged from 80.84 to 117.67 %. This work indicates that the dual-mode CF3-COF-SPME is a promising candidate for the enrichment of multiple hazardous substances in complicated samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Limite de Detecção , Interações Hidrofóbicas e Hidrofílicas , Água/química
13.
Sci Total Environ ; 925: 171679, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494031

RESUMO

Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.


Assuntos
Crassostrea , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Crassostrea/fisiologia , Brasil , Antioxidantes/análise , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
14.
Sci Rep ; 14(1): 6259, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491054

RESUMO

Urban trees' biomonitoring of pollutants such as polycyclic aromatic hydrocarbons (PAHs) yields pertinent and useful data for air pollution management. The aim of this study was to biomonitor PAHs in pine (Pinus eldarica Medw.) trees in the city of Isfahan and identify their sources. In total, 34 samples of outer bark of the trees were collected and their contents of 16 EPA PAHs were analyzed. With a median value of 136.3 ng/g, the total PAH contents in tree barks varied from 53.4 to 705.2 ng/g. The average values of the diagnostic ratios for Ant/(Ant + Phe), Flu/(Flu + Py), BaA/(BaA + Chr) and IP/(IP + BP) were 0.19, 0.49, 0.45 and 0.49, respectively, revealing the PAHs majority source of pyrogenic. Meanwhile, principal component analysis showed two major types of PAHs sources including pyrogenic (fossil fuel combustion and industrial activities) and petrogenic (uncombusted) sources. The average ratio An/(An + Phe) and Flu/(Flu + Py) in bark samples was close to their relevant ratios in ambient air which demonstrated the potential use of this approach for biomonitoring of PAHs.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Pinus , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Biológico , Casca de Planta/química , Monitoramento Ambiental , Poluentes Ambientais/análise , China , Poluentes Atmosféricos/análise
15.
Environ Geochem Health ; 46(4): 135, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483670

RESUMO

Some Polycyclic Aromatic Compounds (PACs) such as nitrated-PAHs (NPAHs), oxygenated-PAHs (OPAHs) and methyl-PAHs (MPAHs) have attracted significant concern due to derivatives have greater potential to be more toxic at low environmental concentrations compared to their PPAHs, particularly in petrochemical industrial region and its surrounding areas surface soils in China. Hence, this article provides an insight into the fate, sources, impacts, and relevance to the external environment of PAH-derivatives based on important emissions source. Moreover, prospective health risk due to their exposure has also been discussed. In this study, the concentration (10-3 ng/g) of Æ©18PPAHs, Æ©11MPAHs, Æ©12NPAHs, and Æ©4OPAHs in the park were 9.67 ± 1.40, 3.24 ± 0.54, 0.03 ± 0.02 and 0.19 ± 0.65, respectively, which were 4.47, 3.89, 2.04 and 1.17 times than of them surrounding the region. A decreasing trend of the low molecular weight (2-4Rings) contribution to the total amount of PAHs, while the fraction of high molecular weight (5-6Rings) species showed the opposite trend. According to the principal component analysis (PCA) and diagnostic ratios indicated PAHs in the soil samples have mixed sources from industrial activities, solid fuel combustion, and heavy traffic. Despite the high concentrations of MPAHs and OPAHs, the toxicity equivalency quotients (TEQs) of them were not calculated due to the lack of toxic equivalent factors (TEF), thus current studies on PAH and derivatives could have underestimated their exposure risks. The quality and sustainable management of soils are crucial for human health and sustainable development, while there is lack of public awareness of the severe issue of soil pollution. It is recommended to conduct more intensive monitoring and regional assessments in the future.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Humanos , Compostos Policíclicos/análise , Monitoramento Ambiental , Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco
16.
Huan Jing Ke Xue ; 45(2): 1015-1025, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471939

RESUMO

In order to comprehensively study the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs) in soils of Guangzhou, 222 topsoil samples were collected and analyzed. The ecological risk of soil PAHs pollution was evaluated using the effect interval low/median method (ERL/ERM) and the (BaP) toxicity equivalent method, and the health risk of soil PAHs pollution was evaluated using the lifelong cancer risk increment model. The source of PAHs was analyzed using the characteristic compound ratio method and PMF model. The results indicated that: the content of surface soil (∑16PAHs) in Guangzhou was 38-11 115 µg·kg-1, with an average of 526 µg·kg-1, and 16 types of polycyclic aromatic hydrocarbon monomers showed strong variation. There was a certain degree of ecological risk of PAHs in Guangzhou, and there was already a significant ecological risk of PAHs pollution in individual sampling points, which were generally in a state of mild pollution. Based on the results of the health risk assessment, the contribution rates of total cancer risk in both adults and children were presented as follows: skin contact > ingestion of soil > respiratory intake. The health risk of children was greater than that of adults, and the overall health risk was within an acceptable range. Source analysis showed that the main sources of soil PAHs in Guangzhou were coal (37.1%); diesel (32%); coking (17.3%); and mixed sources of traffic emissions, biomass combustion, and petrochemical product volatilization (13.6%). The overall source of soil PAHs belonged to mixed sources. The research results have enriched our understanding of the pollution status of PAHs in the surface soil of Guangzhou and are helpful in promoting soil pollution prevention and control actions.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Criança , Adulto , Humanos , Solo/química , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Poluição Ambiental/análise , Medição de Risco , China
17.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474484

RESUMO

The determination and evaluation of 16 polycyclic aromatic hydrocarbons (PAHs) in seven Chinese herbal medicines (CHMs) were conducted through a rapid and straightforward extraction and purification method, coupled with GC-MS. A sample-based solid-phase extraction (SPE) pretreatment technique, incorporating isotopic internal standards, was employed for detecting various medicinal parts of CHMs. The assay exhibited linearity within the range of 5 to 500 ng/mL, with linear coefficients (R2) for PAHs exceeding 0.999. The recoveries of spiked standards ranged from 63.37% to 133.12%, with relative standard deviations (RSDs) ranging from 0.75% to 14.54%. The total PAH content varied from 176.906 to 1414.087 µg/kg. Among the 16 PAHs, phenanthrene (Phe) was consistently detected at the highest levels (47.045-168.640 µg/kg). Characteristic ratio analysis indicated that oil, coal, and biomass combustion were the primary sources of PAHs in CHMs. The health risk associated with CHMs was assessed using the lifetime carcinogenic risk approach, revealing potential health risks from the consumption of honeysuckle, while the health risks of consuming Lycium chinense berries were deemed negligible. For the other five CHMs (glycyrrhizae, Coix lacryma, ginseng, lotus seed, seed of Sterculia lychnophora), the health risk from consumption fell within acceptable ranges. Furthermore, sensitivity analyses utilizing Monte Carlo exposure assessment methods identified PAH levels in CHMs as health risk sensitizers. It is crucial to recognize that the consumption of herbal medicines is not a continuous process but entails potential health risks. Hence, the monitoring and risk assessment of PAH residues in CHMs demand careful attention.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Medição de Risco , Extratos Vegetais/análise , China
18.
Front Public Health ; 12: 1338435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510349

RESUMO

Introduction: Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods: This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results: Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 µg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion: This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.


Assuntos
Poluentes Ambientais , Bombeiros , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Feminino , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pressão Sanguínea , Estudos Transversais , Biomarcadores , Estilo de Vida
19.
Sci Total Environ ; 922: 171325, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428604

RESUMO

Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Adolescente , Poluentes Atmosféricos/análise , Estações do Ano , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , China , Ásia Oriental , Medição de Risco
20.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428790

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Coque/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Exposição Dietética/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Medição de Risco , Solo , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...